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Among the methods for conversion of a primary hydroxyl to an alkyl fluoride' only the 

use of sulfur tetrafluoride is suitable for serine fluorination. 
2 

The product is 6-fluoro- 

alanine 2 whose S-isomer is a broad spectrum antimicrobial. 
3 

- In investigating the reaction 
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using HF as solvent we were surprised to find as much as 40% "unreacted" serine 1, even with 

large excesses of SF4. Difficulty in separating amino-acids 1 and 2 made complete conver- _ 

sion imperative. Suspecting serine to be held up as an O-blocked species and regenerated 

upon aqueous work-up, we turned to in situ "F and 13C NMR examination of the reaction. A -__ 

pathway involving coupling of two serines to one SF4 was found. 

A typical NMR experiment (Varian XL-lOOA, Fourier transform operation) had 505 mg 

(5 mmol) L-serine dissolved in anhydrous HF (1.0 mL) in a specially constructed Kel-m 

cell, treated at -78°C with SF4 (540 mg, 5 mmol). Spectra were obtained between -60 and 

-30°C (13C at 25.159 Mhz; "F at 94.128 or 94.150 Mhz). 

Using 13C we found virtually complete disappearance of serine with formation of fluoro- 

alanine 2 and a novel species 3 in 1:2 ratio. _ - With time 2 vanished, producing more fluoro- 

alanine and another novel compound 4 in a final 60:40 ratio. _ Aqueous work-up produced a 

60:40 mixture of fluoroalanine:serine (IH, 13C NMR, HPLC4). 

A companion "F study revealed slow conversion of a 0 = -19.0 ppm singlet to a -53.8 

ppm doublet (t+ = 1.5 hr, -40°C). Integration showed the doublet intensity growth exactly 

matching the singlet's decrease. We ascribe the doublet to diastereomers of fluorosulfite 

5 and propose the following scheme: 
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Racemic serine results support 2. When the two serines in 2 are both R- or both S- 

the tetrahedral sulfur is achiral; the single lqF resonance at -19.0 ppm appears. With R,S- 

or S,R- combinations, sulfur becomes chiral and two diastereotopic resonances at -18.0 and 

-20.3 are seen. The statistical 1:2:1 pattern we observed with racemic Serine is ConSiS- 

tent with structure 2. 
5 

The unusually large 13C-H spin coupling at C a (Table), indicative of potent electron 

withdrawal, 7 fits 3 _. In addition, CE appears as doublet with full proton decoupling, due 

to either 13C shielding inequivalence or a resolvable spin splitting by a single lgFa8 

Diastereotopically paired signals are expected for 5. 
9 

All carbons and the fluorine ex- 

hibited doubled signals. The fluorine pattern was identical whether L-serine or its racemate 

was employed. The IqF shift at -54 ppm is within a 10 ppm range reported for some simple 

analogs.lO*ll 

The identification of 2, which presumably arises from the bimolecular reaction of serine 

with an intermediate oxosulfur trifluoride A (scheme), 
12 

led us to perform the fluorination at 

higher dilution. Consequently, 99:1 ratios of fluoroalanine to serine were obtained. 

Cpd. 
__- 

Ser. 1 - 

F-Ala 2 - 

3 - 
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TABLE 

Low Temperature NMR Data on Liquid HF 

c a) 
n 

6 Pattern lJCH 1 Fc Pattern ") lJCH ::..1.; 

56.0 s 149.2 61.1 s 154.1 -- __ 

55.7 d, 20 hz 149.2 81.0 d, 172 ha 161.3 +231.2 t of d; 45.5, 30 hz 

54.0 SC) 148.5 77.0 d, 6 hzC) 167.3 + 1.7 -19.0 s 

- 54.2 d, 3$ ha d, 60.0 t, ~3 hz') r~57. -54.0 d, 0.27 ppm 

NOTES: a) 
13 

C @ approx. -5O"C, external TMS (in acetone-d6) reference. 

b) 
19 

F @ approx. -4O"C, internal C6F6 (0 q +163.0) reference. 

c) Broad signal 

d) Obscured 
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A triplet appearing for CS is ascribed to "F splitting superimposed on a small 

shielding inequivalence. 

NMR evidence was not found for this likely intermediate A (see scheme). 
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