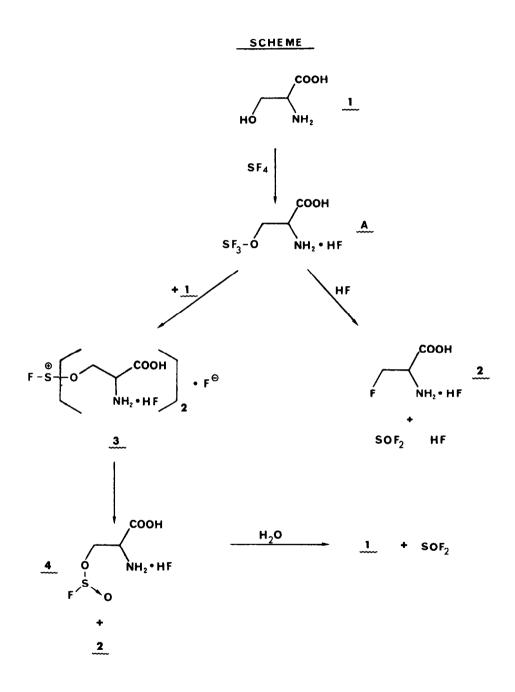

Tetrahedron Letters, Vol.25, No.27, pp 2851-2854, 1984 0040-4039/84 \$3.00+.00 Printed in Great Britain ©1984 Pergamon Press Ltd.

The mechanism of serine fluorodehydroxylation: $^{13}\mathrm{C}$ and $^{19}\mathrm{F}$ NMR studies

Alan W. Douglas and Paul J. Reider Merck Sharp & Dohme Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065

Summary: Competitive reaction pathways responsible for the incomplete fluorination of serine by SF_4 were elucidated and inhibited.

Among the methods for conversion of a primary hydroxyl to an alkyl fluoride¹ only the use of sulfur tetrafluoride is suitable for serine fluorination.² The product is β -fluoro-alanine <u>2</u> whose S-isomer is a broad spectrum antimicrobial.³ In investigating the reaction



using HF as solvent we were surprised to find as much as 40% "unreacted" serine <u>1</u>, even with large excesses of SF_4 . Difficulty in separating amino-acids <u>1</u> and <u>2</u> made complete conversion imperative. Suspecting serine to be held up as an O-blocked species and regenerated upon aqueous work-up, we turned to <u>in situ</u> ¹⁹F and ¹³C NMR examination of the reaction. A pathway involving coupling of two serines to one SF₄ was found.

A typical NMR experiment (Varian XL-100A, Fourier transform operation) had 505 mg (5 mmol) L-serine dissolved in anhydrous HF (1.0 mL) in a specially constructed Kel-F[®] cell, treated at -78°C with SF4 (540 mg, 5 mmol). Spectra were obtained between -60 and -30°C (¹³C at 25.159 Mhz; ¹⁹F at 94.128 or 94.150 Mhz).

Using ¹³C we found virtually complete disappearance of serine with formation of fluoroalanine $\underline{2}$ and a novel species $\underline{3}$ in 1:2 ratio. With time $\underline{3}$ vanished, producing more fluoroalanine and another novel compound $\underline{4}$ in a final 60:40 ratio. Aqueous work-up produced a 60:40 mixture of fluoroalanine:serine (¹H, ¹³C NMR, HPLC⁴).

A companion ¹⁹F study revealed slow conversion of a ϕ = -19.0 ppm singlet to a -53.8 ppm doublet (t₁₂ = 1.5 hr, -40°C). Integration showed the doublet intensity growth exactly matching the singlet's decrease. We ascribe the doublet to diastereomers of fluorosulfite 4 and propose the following scheme:

Racemic serine results support 3. When the two serines in 3 are both R- or both Sthe tetrahedral sulfur is achiral; the single 19 F resonance at -19.0 ppm appears. With R,Sor S,R- combinations, sulfur becomes chiral and two diastereotopic resonances at -18.0 and -20.3 are seen. The statistical 1:2:1 pattern we observed with racemic serine is consistent with structure 3.⁵

The unusually large ¹³C-H spin coupling at C_{β} (Table), indicative of potent electron withdrawal,⁷ fits <u>3</u>. In addition, C_{β} appears as <u>doublet</u> with full proton decoupling, due to either ¹³C shielding inequivalence or a resolvable spin splitting by a single ¹⁹F.⁸

Diastereotopically paired signals are expected for $\underline{4}$.⁹ All carbons and the fluorine exhibited doubled signals. The fluorine pattern was identical whether L-serine or its racemate was employed. The ¹⁹F shift at -54 ppm is within a 10 ppm range reported for some simple analogs.^{10,11}

The identification of 3, which presumably arises from the bimolecular reaction of serine with an intermediate oxosulfur trifluoride <u>A</u> (scheme), ¹² led us to perform the fluorination at higher dilution. Consequently, 99:1 ratios of fluoroalanine to serine were obtained.

			Low 1	empera	iture NMR Da	ita on Liquid	HF		
		C _α ^{a)})		c	a) 6	l⁰F		
Cpd.	δ _c	Pattern	¹ ј _{СН}	δ _c	Pattern	1 _J CH	ø	Pattern	
Ser. <u>1</u>	56.0	s	149.2	61.1	s	154.1			
F-Ala <u>2</u>	55.7	d, 20 hz	149.2	81.0	d, 172 hz	161.3		t of d; 45.5, 30 hz	
						167.3 <u>+</u> 1.7			
<u>4</u>	54.2	d, 3^{l}_{2} hz	d)	60.0	t,∿3 hz ^{c)}	~157.	-54.0	d, 0.27 ppm	
Nome	, 13,						,		

		TAB	LE			
ωw	Temperature	NMR	Data	on	Liquid	Ŧ

<u>NOTES</u> : a) $$	C @	approx.	-50°C,	external	TMS	(in	acetone-d ₆)	reference.
----------------------	-----	---------	--------	----------	-----	-----	--------------------------	------------

- b) ¹⁹F @ approx. -40°C, internal C_6F_6 ($\phi = +163.0$) reference.
- c) Broad signal
- d) Obscured

References

- 1. a. M.R.C. Gerstenberger and A. Haas, Angew. Chem. Int. Ed. Engl., 20, 647 (1981).
 - b. M. Schlosser, <u>Tet</u>., <u>34</u>, 3 (1978).
 - c. W.J. Middleton, <u>J. Org. Chem</u>., <u>40</u>, 574 (1975).
 - d. G.A. Olah, J.T. Welch, Y.D. Vankar, M. Nojima, I. Kerekes, and J.H. Olah, <u>J. Org. Chem.</u>, <u>44</u>, 3872 (1979).

a. J. Kollonitsch, S. Marburg, and L.M. Perkins, <u>J. Org. Chem.</u>, <u>40</u>, 3808 (1975). b. J. Kollonitsch, S. Marburg, and L.M. Perkins, <u>J. Org. Chem.</u>, <u>44</u>, 771 (1979).

- a. J. Kollonitsch, L. Barash, F.M. Kahan and H. Kropp, <u>Nature</u>, <u>243</u>, 346-7 (1973).
 b. J. Kollonitsch and L. Barash, J. Am. Chem. Soc., 98, 5591-3 (1976).
- 4. HPLC ion pairing conditions: EM RP-18 (10 μm) column, 250 mm (L) x 4.6 mm (D); mobile phase: aqueous sodium heptanesulfonate; pH 2.2.
- 5. A neutral $(RO)_2SF_2$ alternate for <u>3</u> might be expected to show fluorine spin splitting in the RS and SR products. Also, the shielding region near -20 ppm is distant from the reported $(ArO)_2SF_2$ examples (-70 ppm).⁶
- 6. J.I. Darragh, S.F. Hossain, and D.W.A. Sharp, J. Chem. Soc. Dalton Trans., 1975, 218.
- 7. S.H. Pines and A.W. Douglas, J. Am. Chem. Soc., 98, 8119 (1976).
- 8. The alternate mentioned in footnote 5 should present a singlet or a triplet, depending on ${}^{13}C{}^{-19}F$ splitting, assuming axial placement of fluorines in the expected trigonal bipyramid.⁶
- A. Majid and J.M. Shreeve, <u>Inorg. Chem.</u>, <u>13</u>, 2710-4 (1974); R.A. DeMarco, T.A. Kovacina and W.B. Fox, <u>J. Fluor. Chem.</u>, <u>6</u>, 93-104 (1975).
- 10. F. Seel, J. Boudier and W. Gombler, Chem. Ber., 102, 443-8 (1969).
- 11. A triplet appearing for C_β is ascribed to $^{19}{\rm F}$ splitting superimposed on a small shielding inequivalence.
- 12. NMR evidence was not found for this likely intermediate \underline{A} (see scheme).

(Received in USA 23 April 1984)